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This paper analyzes the use of a version of lexical maximim strategies, called 
protective behavior, in two-sided matching models. It restricts attention to mecha- 
nisms which produce stable matchings, that is, matchings which are individually 
rational and pairwise optimal. The main results of the paper show that truth-telling 
is the unique form of protective behavior in two such mechanisms. The first is 
the one which selects the student-optimal stable matching in the college-admissions 
model, while the second is the mechanism which selects the buyer-optimal match- 
ing in the Shapley-Shubik assignment model. Journal of Economic Literature 
Classification Numbers: C78, D81. © 1995 Academic Press, Inc. 

1. INTRODUCTION 

In this paper we test a very general insight about the incentive properties 
of collective decision-making mechanisms against the specific yet rich and 
relevant class of two-sided matching models. The insight is the following: 
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although not in general a dominant strategy, truth-telling may become a 
very salient and sensible type of behavior in many revelation games, 
provided agents are sufficiently risk averse and poorly informed about 
other players. We shall provide a specific formulation of this general idea 
through the analysis of what we call protective behavior, a concept we 
introduced in Barberh and Dutta (1982) and that we extend here to cover 
a richer class of situations. This general insight is then tested against the 
performance of mechanisms that are specifically designed to solve two- 
sided matching problems. In this introduction we shall elaborate on the 
interest and scope of matching models, on the adequacy of our concept 
of protective behavior, and on the relevance of our results. 

There is by now a vast literature on two-sided matching problems. 
Matching processes have been modeled as cooperative and noncoopera- 
tive games. The alternatives faced by society may be finite (as in the 
marriage problem or the college-admissions model, where the only rele- 
vant decision involves matching agents on one side of the market to agents 
on the other side) or infinite (as in the assignment game, where monetary 
payments between agents who are matched are also part of the outcome). 
The domains of preferences under consideration are also different in each 
case, and in our analysis of strategic behavior we retain the assumptions 
on preferences that are standard for each model. But the basic questions 
addressed through these models are common to all. 

The existence of stable matchings, the structure of the set of such 
matchings and the design of algorithms to compute them have been major 
concerns of the literature. The incentives for agents to act strategically 
under matching mechanisms have also been scrutinized, with special atten- 
tion paid to those mechanisms that guarantee stable matchings. No mecha- 
nism which always produces stable matchings with respect to stated prefer- 
ences can make it a dominant strategy for all agents to always reveal their 
true preferences. However, some of the best known mechanisms will 
always make truth a dominant strategy for one side of the market. These 
facts are due to Roth (1982) for the discrete models and to Demange 
(1982) and Leonard (1983) for the assignment game. The nonexistence of 
dominant strategy mechanisms opens the door to more detailed analysis 
of strategic behavior, which will now be dependent on the specific setup 
and equilibrium concept to be used. For example, Roth (1984) showed 
that in the one-to-one models, the mechanism that always yields the opti- 
mal stable matching for one side of the market has the property that every 
Nash equilibrium in undominated strategies will yield a matching that is 
stable with respect to the true preferences. This result, therefore, guaran- 
tees that if we can reasonably expect that only strategy n-tuples that are 

i Roth and Sotomayor (1990) provide an excellent survey and presentation. 
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Nash equilibria in undominated strategies will be used, then unstable 
matchings will not occur. 

Although implementation results of this type are powerful, they implic- 
itly assume that the preferences of all agents are common knowledge. 
This is unlikely to be the case in many situations. As Roth and Vande 
Vate (1989) remark, "one of the difficulties that arises in attempting to 
apply theoretical studies of equilibrium to empirical studies is that the 
information required for agents to implement some kinds of equilibrium 
strategies frequently exceeds the information that agents can reasonably 
be thought to have." One alternative is to model the market as a game 
of incomplete information, as in Roth (1989). But an attempt to model 
actual markets as a game of incomplete information raises conceptual 
problems of its own because of the strong assumption that agents share 
a common prior probability distribution] 

In this paper we consider a framework which is the polar extreme of 
the complete information model. Specifically, we analyze situations where 
agents adopt what we call protective behavior, and we argue that such 
behavior, which is based on a refinement of the traditional maxmin crite- 
rion, would be adequate if agents were extremely risk averse and had no 
information at all about the other agents' preferences. The concept of 
protective behavior is based on a binary comparison between strategies. 
Strategy s protectively dominates strategy s' for agent i under a given 
social decision rule if: (a) i is guaranteed to stay above a certain utility 
level r(s) against a larger set of actions from the rest of society by using 
strategy s than by using strategy s', and (b) s and s' lead to the same 
outcomes for all actions of others under which i would obtain a utility 
level below r(s). Protective domination is a transitive but not complete 
relation. A protective strategy is one that is not protectively dominated 
by any other. The notion of protective behavior when the set of alternatives 
is finite was introduced in Barberh and Dutta (1982) and characterized in 
Barberb, and Jackson (1988). In the present paper we extend it to the 

z This induces Roth and Vande Vate (1989) to concentrate on a class of "plausible and 
informationally parsimonious" strategies, called truncated strategies. As the name suggests, 
a truncated strategy is simply a truncation of a player's true preference list. Roth and Vande 
Vate (1989) study marriage markets in which the matchings are arranged through a random 
process. They show that a player will always have a truncated strategy as a best response 
to any strategy combination used by other players. Moreover, any stable matching can be 
achieved as a Nash equilibrium in undominated strategies via truncated strategies. However, 
though truncated strategies are simpler to use, it is not clear to us that truncated strategies 
are actually "informationally parsimonious." All truncations are not best responses. In 
order to find out which truncation to use, an agent must know the strategy combination 
being used by the other players. Thus, we are back to the complete information framework 
after all. 
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infinite alternative case. Comparisons with a related concept, Moulin's 
notion of prudent strategy, are found in Section 2. 

We prove that there are different matching models under which truthful 
revelation of preferences is the unique protective strategy for all agents. 
Specifically, this is the case for the mechanism that would always choose 
the buyers' optimal stable matching in the assignment model and for 
the one choosing the students' optimal stable matching in the college 
admissions problem (the latter also covers the men's optimal and women's 
optimal mechanism for the marriage problem). It is interesting to notice, 
however, that truth-telling plays a somewhat different role in each of 
these models: it protectively dominates all other strategies in the college 
admissions and the marriage problem, while in the assignment game it 
no longer dominates all others, but still remains the only protectively 
undominated strategy. We also show that other natural mechanisms, like 
the one that would always choose the college-optimal matching, do not 
share the same property. 

We want to stress the importance of the fact that under the above- 
mentioned mechanisms truth-telling is the unique protective strategy. In- 
deed, in these and many other contexts, truth-telling is a maxmin strategy, 
but so are many other strategies. Because of that, statements about max- 
min behavior become extremely inconclusive. This was noted by Thomson 
(1979) and Dasgupta et al. (1979), and it partly justifies the sparse interest 
for maxmin type behavior in the recent literature on implementation, in 
spite of the earlier attention it got in seminal papers like Dr6ze and de la 
Vall6e Poussin (1971). By showing here that truth-telling stands out as 
the unique protective strategy, we provide an appropriate statement for 
the intuition that truth-telling may be a plausible form of behavior in 
situations involving uncertainty. 

2. PROTECTIVE BEHAVIOR 

In this section, we describe the concept of protective behavior. We 
define this concept for an arbitrary game in normal form. In subsequent 
sections, we will point out how the concept can be applied to the specific 
matching models considered in this paper. 

Let I = {1, 2 . . . . .  n} be a set of individuals, and A a set of outcomes. 
The set of outcomes may be finite or infinite. Each individual i E I has a 
real-valued utility function ui:A ~ ~. Note that individual utilities may 
be given ordinal or cardinal meaning, depending upon the specific context. 
Let u_ = (u~ . . . . .  u,,) denote a vector of utility functions. 

For each i E I, let Si be individual i's strategy set, and S = 1-[ S,.. Let 
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g : S ~ A be an outcome funct ion,  specifying an outcome for each n-tuple 
of strategies in S. G = [I, A, S, g, _u] constitutes a game in normal form. 

In order to introduce the concept  of protective behavior in G, we need 
some further notation. Choose any real number k E R, any i E I and 
si ~ S~. Define the set c(k, si) as follows: 

c(k ,  Si) ~- {S_ i ~. S_ i  [ u i ( g ( s  i, s - i ) )  = k}. 

Thus, c(k, s~) is the set of  (n - 1)-tuples of "complementa ry"  strategies 
which in conjunction with s~ gives individual i a utility level of k. 

DEFINITION 1. For any i E I, and s i, s~ E Si, siprotectively dominates 
s~, denoted si d(ui) s;,  if there exists k E R such that 

(i) c(r, s h N c ( r ' , s ~ , ) = O  f o r a l l r < - k a n d r < r ' ,  

(ii) c(k, si) C e(k, s[ ,). 

Let  D(ui) = {si ~ Si l ~s[ E Si such that s[ d(ui) si}. D(ui) is the set of  
protective strategies of  individual i in the game G = [I, A, S, g, u]. 

Suppose si and s[ satisfy conditions (i) and (ii) of  Definition I. Condition 
(i) guarantees that up to the threshold utility level of k, individual i cannot 
lose by employing the strategy si instead of s~. For suppose s_; is a 
complementary strategy profile such that ui(g(si, s_i)) = r <- k. Then, 
condition (i) ensures that ui(g(s[, s-i)) <- r. Moreover  (ii) implies that 
there are complementary profiles s- i  such that ui(g(s[, s_i)) = k and 
ui(g(si, s_i)) > k. Thus, if individuals are extremely risk averse and hence 
more concerned with avoiding "disas ters ,"  the concept of  protective 
behavior is an appealing option. 

The concept  of protective behavior is closely related to Moulin's (1981) 
notion of prudent behavior. We define below prudent strategies in a game 
G where the set of strategies for any player is finite. 

DEFINITION 2. For any i E I, a strategy siprudently dominates s~ iff 
there exists k ~ R such that 

(i) [c(r, si)[ -< [c(r, s[)[ for all r - k, 

(ii) [c(k, s~)[ < [c(k, s[)[. 
(We use the notation [c[ to denote the cardinality of set c.) 

As we have remarked in Barber~ and Dutta (1982), the concept  of 
prudent behavior implicitly assumes that an individual considers all com- 
plementary profiles to be equally likely, whereas protective behavior does 
not require individuals to have any subjective probability distribution 
about other individuals' strategies. We point out at this stage that in any 
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game G where agents have a finite set of  strategies, individual i ' s  set of 
protective strategies D(ui) will be a superset of i 's  set of prudent strategies. 
Since our purpose is to highlight situations in which truthtelling is the 
unique protective strategy in various matching models, it follows that 
analogous statements are true when protective behavior is replaced by 
prudent behavior. 

DEFINITION 3. For  any i E I, strategies s;, s~ E Si are equivalen t  i f f  

for all s_i E S - i ,  g(s i ,  S- i )  = g(s[  , S_i), 

It follows that if si E D(ui), then so must any strategy s[ which is 
equivalent to s;. The reader should keep in mind that our subsequent 
results which show that truth-telling is the unique protective strategy are 
modulo equivalence. 

3. PROTECTIVE BEHAVIOR IN THE MARRIAGE AND COLLEGE 
ADMISSIONS MODEL 

In this section, we will analyze protective behavior in some simple two- 
sided matching models without money. 

Since utility is ordinal in these models, we will use individual pre f e rence  
orderings instead of utility functions in this section. 

We will first describe the simplest two-sided matching model in the 
li terature--the marriage market of Gale and Shapley (1962). There are 
two finite, disjoint sets M and W; M = { m ~ , . . .  , m,} is the set of men, 
and W = {w I , w 2 . . . . .  wk} is the set of women. Each man has preferences 
over women. Similarly, each woman has preferences over men. These 
preferences may be such that man m would prefer to remain single rather 
than be married to a woman w, say, whom he particularly dislikes. A 
woman w is acceptab le  to man m if he prefers her to remaining single. 
Similarly, man m is acceptable to w if she prefers him to remaining single. 
We will assume that everyone 's  preference is strict. The preference of 
each man m will be represented by an ordered list of preferences, P(m) ,  
on the set W tO {m}. That is m's  preference may be of the form: 

P(m)  = w I , w 3 . . . .  , w k 

indicating that his first choice is to be married to w~, his second choice 
is to be married to w 3 and he would much rather remain single than be 
married to anyone else. Similarly, each woman w has an ordered list of 
preferences P(w) ,  on the set M t_J {w}. 

Let  P = {P(m0, • • • , P(mn),  P(wO . . . . .  P(wk)} denote the set of 
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preferences, one for each man and woman. We will often use the notation 
P-w (or P_,,) to represent the preferences of agents other than w (or m). 

An outcome in this market is a set of marriages. Of course, some 
individuals may not find a partner. 

DEFINITION 4. A matching/z is a one-to-one correspondence from the 
set M U W onto itself such that for each m E M and w E W,/z(m) = w 
iff/z(w) = m and if/z(m) q~ W, then/z(m) = m, and similarly if/z(w) q~ 
M, then/z(w) = w. 

A matching/~ is individually rational if each agent is acceptable to his 
or her pair. For a given matching/.L, a pair (m, w) forms a blocking pair 
if/z(m) # w and if they both prefer each other to their mates at/.~. A 
matching is stable if it is individually rational and there are no blocking 
pairs. 3 

Gale and Shapley (1962) proved that for any set of preferences P, the 
set of stable matchings is nonempty. Moreover, when all agents have 
strict preferences, there always exists a stable matching that all men (resp. 
women) will unanimously prefer to any other stable matching. This is 
called the men's optimal (resp. women's optimal) stable matching. Gale 
and Shapley also constructed an explicit algorithm to locate the optimal 
stable matching for either side of the market. 

We now describe a simple model of many-to-one matchings--the "col- 
lege admissions" model. This model is meant to represent situations where 
one side of the market consists of institutions and the other side of individu- 
als. The institutions (colleges, firms) may be matched to several individuals 
(students, workers), but each individual is matched to only one institution. 
More formally, first define for any set X, an unorderedfamily of elements 
of X to be a collection of elements, not necessarily distinct, in which the 
order is immaterial. Hence, a given element may appear more than once 
in an unordered family. Let C be the set of institutions (colleges), and S 
the set of individuals (students). As in the marriage model, each college 
c has preferences P(c) over the set S U {c}, while each student s has 
preferences P(s) over the set C U {s}. 

DEFINITION 5. A matching/z is a function from the set C U S into 
the set of unordered families of elements of C U S such that: 

1. [/z(s)] = 1 for every student s and/z(s) = s if/z(s) ~ C. 
2. [/z(c)] = qc for every college c, and if the number of students in 

/x(c), say r, is less than qc, then/z(c) contains q~ - r copies of c. 
3. /z(s) = c if s E/.t(c). 

Condition 1 says that a student can be matched to at most one college. 

3 In this model, the set of stable matchings coincides with the core of the game. 
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Condition 2 states that each college has a quota qc, so that it can enroll 
at most qc students although it can also keep some positions unfilled. 
Condition 3 requires that if a student is matched to a college, then this 
college is matched to the student. 

To complete the description of the model, we have to describe the 
preferences of agents over different outcomes. In the marriage market, 
preferences could be described very easily because agents' preferences 
over alternative matchings coincided with their preferences over their 
own assignments at the two matchings. In this model, we can still say the 
same thing about the students since at each matching, a student is either 
unmatched or matched to a single college. But colleges having a quota 
greater than 1 must be able to compare groups of students on the basis 
of their preference over single students. 4 Following Roth (1985), we will 
assume that colleges are endowed with preferences P(c) over groups of 
students satisfying the following condition of responsiveness. 

DEHNITION 6. The preference relation P(c) over sets of students is 
responsive to the preferences P(c) over individual students if, whenever 

/z'(c) = (it(c) U {8}\{or}) for tr E it(c) and 8 ~ it(c), 

then it(c)P(c)it'(c) ~ crtS(c)& 

Thus, when it(c) and It'(c) only differ because one is obtained from the 
other by exchanging a student o- for another student 8, the college should 
rank these two sets according to their ranking of the two students that 
make the difference. 

Note that the assumption of responsiveness is a rather weak requirement 
because restrictions are imposed on how colleges compare some groups 
of students only. For instance, if one group consists of the first and fourth 
most preferred students, and the other group contains only the second 
and third most preferred students, then the condition does not apply. 

In addition to responsiveness, we assume that for each college c, fi(c) 
is complete and transitive. 

A matching is individually rational if no student is matched to an unac- 
ceptable college, and no college is matched to any unacceptable student. 
A college c and student s form a blocking pair to it if they are not matched 
to one another at it, but would prefer to be matched to one another 
than to (one of) their present assignments. A matching is stable if it is 
individually rational and it is not blocked by any student--college pair. 
Clearly, the notions of individual rationality, blocking pairs and stable 

4 There is a sizable literature on the general problem of extending preferences over sets 
to the power set. See, for instance, Barber~ and Pattanaik 0984) and Kannai and Peleg 
(1984). 
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matchings in the college admissions model are straightforward generaliza- 
tions of the corresponding concepts in the marriage market. 

We now briefly comment on how the definition of protective behavior 
given in Section 2 can be applied in the marriage market and college 
admissions models. Note first that the definition can be applied almost 
straight-away in the case of the marriage model. Here, the strategy set of 
any agent m(say) is simply the set of possible preference orderings over 
W U {m}, while the outcome set is the set of possible matchings for m. 
Suppose m's preference ordering is: 

P*(m) = w l, w 2 , .  . . , w, ,  m. 

Then, in comparing two alternative strategies P(m) and P'(m) under 
say the M-optimal stable matching P-M, m first compares the set of comple- 
mentary profiles which together with P(m) leaves him unmatched to the 
set of complementary profiles which leaves him unmatched when he uses 
P'(m).  If these two sets are identical, then the next round of comparisons 
is in terms of the" sets of complementary profiles which result in w,, and 
SO o n .  

In the college admissions model, the above interpretation remains valid 
for the students. However, the situation is more complicated on the college 
side of the market. The set of strategies for colleges will still be preference 
orderings over the set of students. But, for any college c with quota qc 
greater than 1, the set of outcomes will be sets of students with cardinality 
not exceeding qc. Hence, a college will use P(c) to evaluate alternative 
strategies. 

We will now show that in the college admissions model, the mechanism 
which always chooses the student optimal matching has the property that 
truthful revelation of preferences is the unique protective strategy for all 
agents. Since the marriage model is a special case of the college admissions 
model, our result obviously goes through for the marriage market. Also, 
note that in the marriage market, both men and women have a symmetric 
role. Hence, truthful revelation of preferences will be the unique protective 
strategy in both the M-optimal as well as the W-optimal stable matchings. 

The following notation will be useful in the sequel. Given any subset 
Y C A and a preference ordering P over A, we say that Y is bottom for P 
if, Vy ~ Y, Vx E A \ Y ,  xPy.  Two preference orderings P and P' agree on 
Y if Vx, y ~ Y, xPy  iff xP'y .  

For any college c or student s, we will denote complementary profiles 
by P_,. or P-s .  

Given any preference ordering P, and any integer r, the rth worst alterna- 
tive in A is ar(P ) = {x ~ A I 3 exactly (r - 1) alternatives y ~ A : xPy}. 

We now state the main result in this section. 
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THEOREM 1. Under the mechanism which always yields the student 
optimal matching tZs, truthtelling is the unique protective strategy for all 
agents. 

The proof of the theorem is preceded by a few lemmas. In this lemmas, 
choose a specific college c, a preference ordering P(c) and some P(c) 
which is responsive to P(c). Let S" denote the set of unacceptable students 
for college c according to P(c). The lemmas below specify properties of 
the set of protective strategies under the mechanism which chooses the 
matching tz s. 

LEMMA 1. I f  P(c) and P'(c) agree on S\S" and S" is bottom for P'(c), 
then P(c) and P'(c) are equivalent strategies. 

In words: the order of unacceptable students in the colleges' preferences 
does not matter. 

Proof. Since/z s is individually rational, P(c) and P'(c) both guarantee 
that c is not matched to any unacceptable student. Since the only difference 
between P(c) and P'(c) is in the ranking of unacceptable students, the 
result follows. 

LEMMA 2. Let S' be the qc-top ranked alternatives according to P(c). 
I f  P'(c) and P(c) agree on (S U {c})\S', and (S U {c})\S' is bottom for 
P'(c), then P'(c) and P(c) are equivalent strategies. 

In words: the order of students which are all top and within a colleges's 
quota does not matter. 

Proof. If P'(c) satisfies the hypothesis of the lemma, then the only 
difference between P'(c) and P(c) is in the ranking of the alternatives in 
S'. It is easy to check that the two orderings must give the same outcome 
for all complementary profiles. 

LEMMA 3. I f  for some s ~ S", sP'(c)c, then P(c)d(P(c))P'(c). 

In words: all strategies which treat an unacceptable student as accept- 
able are protectively dominated by the truth. 

Proof. Suppose c expresses the preference ordering P(c). Since/z s is 
individually rational, c cannot then be matched to any unacceptable stu- 
dent. Now consider the following P*c. 

1. Vs' # s, c is unacceptable to s'. 
2. c is the only acceptable college for s. 

Clearly, tzs(P'(c), P 'c ,  c) = {s, c . . . . .  c}; i.e., c is matched to s, with 
qc - 1 positions remaining unfilled. On the other hand, tzs(P'(c), P%, c) 
= { c . . . . .  c}; i.e., c does not fill up any position. Since s is unacceptable 
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to c, we must have P(c)d(P(c))P'(c). This completes the proof  of the 
lemma. 

LEMMA 4. I f  for some s E S\S", cP'(c)s, then P(c)d(P(c))P'(c). 

In words: all strategies which treat an acceptable student as unaccept- 
able are protectively dominated by truth. 

Proof. The proof  is similar to that of Lemma 3, and is therefore 
omitted. 

We need some additional notation before we can state the next lemma. 
Fix a complementary profile P_¢ for college c. Suppose i~s(P(c), P-c, c) 
= { s j , . . .  , Sk} = S, where s~ is the worst  option for c according to P(c) 
in the set S. (We do not rule out the possibility that Sk = C; i.e., c may 
not fill up all positions at i~s(P(c), P-c).) Let  S' = {s ~ S I skP(c)s}. S' is 
obviously a bot tom set for P(c). Let P'(c) be any preference ordering such 
that S' is a bot tom set for P'(c). 

Let P = (P(c),.P_c), P' = (P'(c), P-c). 

LEMMA 5. Suppose/zs(P) is individually rational for P'. Then, 

/xs(P) # / x s ( P ' )  ~ / z s ( P ,  c)P(c)l~s(P', c). 

Proof. First, we show that/zs(P) is a stable matching with respect  to 
the preference profile P' .  For,  suppose that/xs(P) is not stable with respect 
to P ' .  Then the blocking pair must contain c. Suppose (c, s) is a blocking 
pair. Then sP'(c)sk. But {s' E S I skP(c)s'} is bot tom for P'(c). So 
sP'(c)sk ~ sP(c)sk. But, then (c, s) will also constitute a blocking pair to 
/zs(P). So/.Ls(P) is a stable matching under profile P ' .  

Suppose/zs(P)  # / z s (P ' ) .  Since/z s is the student-optimal stable match- 
ing, Vs E S, either/~s(P' ,  s)P(s)tzs(P, s) or /zs(P ' ,  s) = /zs (P ,  s). Consider 
the set of  students S ~ = {s ~ S I ~s( P ' ,  s) = c ~ / z s ( P ,  s)}. This set must 
be nonempty,  and Vs ~ S I, cP(s)txs(P, s). If for any s E S I, sP(c)sg then 
(c, s) would block/zs(P) .  So Vs ~ SI,^skP(c)s. So for any P(c) which is 
responsive to P(c) we have /xs(P, c)P(c)tzs(P', c). This completes the 
proof of  the lemma. 

We can now proceed to prove the theorem. 

Proof of Theorem 1. Suppose P'(c) is some preference ordering for 
college c. From Lemmas  3 and 4, it is clear that if the set of unacceptable 
students according to P'(c) is not S", then P(c)d(P(c))P'(c). Also, from 
Lemma 1, the order in which the unacceptable students are ranked does 
not matter so long as S" is a bot tom set. So, we can assume w.l.o.g, that 
S" = 0 .  
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Since truth-telling is a dominant strategy for all students under /z  s, it 
suffices to show that truthtelling is the unique protective strategy for all 
colleges. 

Let  P'(c) be some preference ordering which is not equivalent to P(c) 
and such that 

I. For some integer r, a~.(P(c)) = ak(P'(c))Vk < r. 
2. ar(e(c)) ~ ar(e'(c)). 

We want to show that P(c) d(P(c))P'(c). Take any complementary profile 
P-c .  Suppose ixs(P(c), P -c ,  c) fq {al(P(c)) . . . . .  ar(P(c))} # 0 .  Since 
{al(P(c)) . . . . .  ar-i(P(c))} is also a bottom set for P'(c), tzs(P(c), P-c) 
must be individually rational for P'(c). From Lemma 5, either ixs(P(c), 
P-c ,  c) = Ixs(P'(c), P-c ,  c) or I~s(P(c), P-c ,  c)P(c)l~s(P'(c), P-c ,  c). 
Hence, in order to show that P(c)d(P(c))P'(c), it is sufficient to show that 
there is some P-c  such that txs(P(c), P -c ,  c) = tzs(P'(c), P-c ,  c)\{a~(P(c))} 
O {a~(e(c))} for s o m e j  > r. 

Note that since P(c) and P'(c) are not equivalent strategies, IsI - 
(r - 1) > qc. Let  ar(P'(c)) = sj and ar(P(c)) = St, and S* be some set of 
(qc - I) students such that Vs E S* s P ( c ) s  r. Consider a complementary 
profile P-c  such that 

1. Vs ~ S* U {sj, st}, cP(s)sP(s)c'Vc' E C\{c}. 
2. Vs ~ (S* U {sj, s~}), c is not acceptable to s. 

The reader can check that tzs(P(c), P-c ,  c) = {sj} U S* while ixs(P'(c), 
P-c ,  c) = {Sr} U S*. Since sjP(c)S~, this shows that P(c)d(P(c))P'(c). This 
completes the proof of Theorem 1. 

Notice that in the marriage model, both sets of agents can be identified 
with the students in the college admissions model. As a result we can 
state: 

THEOREM 2. In the marriage market, truthtelling is the unique protec- 
tive strategy in the M-optimal and W-optimal stable matchings. 

We show below that a corresponding result is not true for the college- 
optimal stable matching. We remark in passing that the example below 
demonstrates that Lemma 5 does not hold for the college-optimal 
matching. 

EXAMPLE 1.5 Let S = {sj, s2, s3, s4}, C = {cl, c2, c3, c4} with quotas 
ql = 2, q2 = 1, q3 = 1. Let  college c I have the preference ordering 

5 This example is adapted from Roth (1985). 
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P(Cl )  = Sl, s2, s 3, s 4. 

Consider the complementary profile P_c, 

• P ( s  l) = c3, cl, c2. 
• P(s2) = c2, c, ,  c 3. 
• P(s3)  = c l ,  c3, c2. 

• e ( s 4 )  = c l ,  c2, c3. 

• e ( c 2 )  = sl, s2, s3, s4. 
• e ( c 3 )  = s3, s 1, s2, s,I. 

Then, tzc(P(cl), P-c t '  c,) = {s 3, $4}. Let P'(c 0 = s2, s4, sl ,  s3. 
Clearly, tz~(P'(cO, P_ 1~, cl) = {s2, s4} and {s2, s4} P(c0{s3, s4). Moreover,  

if c~ E tzc(P'(ct), P_q, cl) (that is if college c, does not fill its quota q~z) 
for some if-c, ,  then it can be checked that c~ E Ix~(P(cO, -ff-ct' cO" This 
implies that P(cO does not protectively dominate P'(cO. 

4. PROTECTIVE BEHAVIOR IN THE ASSIGNMENT GAME 

In this section, we will analyze protective behavior in a matching model 
with money. More specifically, we consider the assignment game arising 
between a set P of  m potential buyers  of objects owned by the set Q of 
n potential sellers. Each seller owns and each buyer  demands exactly one 
indivisible object.  Sel ler j  has a reservation price of rj for the object owned 
by him, while buyer  i 's  valuation of se l le r j ' s  object is c~ U. If buyer  i buys 
from se l le r j  at price pj, then i 's  utility is ui = % - pj, w h i l e j ' s  utility 
is oj = pj. - rj. Of course,  mutually beneficial trade is possible only if 
O~q> rj .  

Let o~ be the (mxn) matrix of au's and r be the n-vector of  sellers' 
reservation prices. A feasible assignment for (P, Q, a, r) is a matrix x = 
(x U) satisfying (a) 2i~e xu -< 1, (b) 2j~Q x, 7 -< 1, (c) Vi, j x U E {0, 1}. 

The obvious interpretation is that if x o. = 1, then buyer  i is "ma tched"  
to seller j .  Condition (b) imposes the restriction that i is matched to at 
most one seller, while condition (a) states that each seller can sell to at 
most one buyer.  

This is a model of one-to-one matching between agents in P and Q. An 
outcome in this game is a triple (u, v; x) where u ~ O", o E O n and x 
is an assignment. Note  that in contrast to the ordinal matching models 
considered in Section 3, an individual agent 's utility level is no longer 
restricted to discrete values. 

A triple (u, o; x) is feasible if x is a feasible assignment such that 
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ui + Y ,  v r = - r ) x  U. 
iEP jEQ i~P 

rEg_ 

DEFINITION 7. 
V j E  Q. 

A feasible outcome (u, v; x) is stable if Vi E P, 

(i) ui>-O, vj>-O 
(ii) uj + uj ~ max(0, air - r). 

Shapley and Shubik (1972) proved that there is a P-optimal stable payoff 
(~, _v) with the property that for any stable payoff (u, v), ~ >- u and v -< 
v. Similarly, there is a Q-optimal stable payoff ~ ,  ~) with symmetrical 
properties. Moreover, Demange (1982) and Leonard (1983) proved that 
in the "direct revelation" game in which buyer i announces a vector ai, 
and sellerj announces ~5., truth-telling is the dominant strategy for buyers 
if the outcome function always selects the P-optimal payoff. Of course, 
revelation of the true reservation price is not in general the dominant 
strategy for sellers in this game. 

Let p.p denote the outcome function which selects the P-optimal stable 
payoff. We show below that revelation of the true reservation price is the 
unique protective strategy for sellers under ~p. 

Let pj(a, r) denote the price obtained by seller j under ~p when (a, r) 
are the announced vectors of buyers' valuations and sellers' reservation 
prices. By convention, we set pj(a, r) = r* if seller j does not sell his 
object at (a, r), where r* is sel ler j ' s  true reservation price. 

THEOREM 3. Under izp, truthtelling is the unique protective strategy 
for  all agents in P U Q. 

Proof. Clearly, we only need to prove that truthtelling is the unique 
protective strategy for all sellers. 

Choose any seller j,  and let his true reservation price be r*. 
Step 1. Suppose j announces a reservation price of r i < r*. Then, 

r 7 dominates rj. 
To see this, choose any (a, r_)  Note that ifpj(a, r_j, r) -> r* then pi(a, 

r j, r~) = pj(a, r_j, r). Moreover, ifpj(a,  r_j, r) E (rj, r*), then sellerj  
is unmatched by ~p if he announces r*. 

Hence, r 7 dominates rj. 
Step 2. Suppose j announces a reservation price of rj > r*. Let rj = 

r 7 + e. Then, let rj = r~ + (d2). We show that rj protectively domi- 
nates r r. 

Consider any (a, r_)  such that pj(a, r_ r, rj) = r*. Clearly, if j is 
unmatched at (~, r_ r, rj), then j is also unmatched at (a, r_j, r) since 
rj > rj. Hence, pj(a, r_j, rj) = r*. Now consider (a, r_j) such that: 
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(i) o~tj = rj,  oqk < rk for all k ~ j 
(ii) o~ U < rj for all i ¢ l 

(iii) ctik = rk for all i # l, for all k ~ j .  

Clearly, pj(a, r_j, rj) = rj while pj(t~, r_j, 0 = rj*. Noting that for all 
(o~, r_j), pj(a, r_j, rj) >- r]' and pj(u, r_j, r i) -> rj.*, the above arguments 
show that rj protectively dominates r i. 

Step 3. r* is protectively undominated. 
In view of Step 1, we only need to show that if r i > rj*, then rj does 

not protectively dominate r*. 
We leave it to the reader to construct (a, r_j) such that 

(i) pj(a, r_j, rT) E (r*, rj) and (ii) pj(a, r_j, 0 = rT. 

Clearly, the existence of  such a vector  (a, r_j) demonstrates that r* is 
protectively undominated. 

This concludes the Proof  of  Theorem 3. 

Remark I. Theorems 1 and 3 both show that truthtelling is the unique 
protective strategy in the respective matching models. Moreover,  under 
the student optimal matching in the college admissions model, truth-telling 
protectively dominates all other (nonequivalent) strategies. However ,  
truthteUing does not protectively dominate all other strategies for sellers 
under pp. 

Remark 2. Theorem 3 raises the question whether truthtelling is the 
unique protective strategy in the mechanism which selects the Q-optimal 
stable payoff. Truth-telling is the dominant strategy for all sellers in this 
mechanism. Unfortunately,  buyers  do not have any protective strategy 
at all. To see this, consider the special case where there is only one 
seller. Then, in the seller-optimal matching the object is sold at the price 
announced by the highest bidder (or not sold at all if all bids are below 
the seller's reservation price). Hence,  truthtelling can never yield any 
buyer  a positive utility. So, truthtelling is dominated by any strategy which 
announces a lower bid. But, if c~; is the true valuation of bidder i, then a 
bid of  ~i = (~i - e), is protectively dominated by the bid (o~ i - e/2). 
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